Физику процесса шнекового бурения отличают три важных момента: охлаждение породоразрушающего инструмента, транспортирование разрушенной породы на поверхность и закрепление стенок скважины поднимаемой породой.
При вращательном бурении неизбежно трение породоразрушающего инструмента о породу и его нагревание: чем быстрее и больше силы трения, тем больше выделяется тепла и сильнее нагревается инструмент. При недостаточном охлаждении, т. е. отводе будет происходить значительный износ инструмента или даже его расплавление — «прижог». В шнековом бурении при отсутствии потока очистного агента охлаждение породоразрушающего инструмента происходит вследствие отдачи тепла непосредственно породе, эффективность охлаждения обеспечивается высокой скоростью бурения. В твёрдых скальных породах, где скорость бурения низка из-за недостаточного охлаждения инструмента, шнековое бурение не применяют.
Транспортирование разрушенной породы по принципу шнекового транспортера
Транспортирование разрушенной породы осуществляется по принципу шнекового транспортера. Такие транспортеры для перемещения сыпучих материалов известны давно и широко применяются в различных областях техники: в цементной промышленности, на зерновых элеваторах, в сельхозмашинах и в обычной бытовой мясорубке.
Как работает шнековой транспортер при бурении скважины? Шнек состоит из центрального трубчатого стержня, к которому приварена спиральная реборда, представляющая собой винтовую поверхность. При бурении вертикальных скважин элементарный участок винтовой поверхности может быть представлен как наклонная плоскость с углом наклона а, в плане представляющая собой диск (рис. 8.25).
Рис. 8.25. Схема динамики подъема частицы породы при шнековом бурении